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Under appropriate conditions cumulative regret Rn = r +...+ rn is

shown to have a finite limit even when n tends to infinity. The

limit can be explicitly computed in terms of ab,c and the first

four moments of x.
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ABSTRACT

Let (6lx),...,(nX ) be independent and identically dis-

tributed random vectors with E(xj6) = 6 and Var(xIO)
2

a + be+ ce . Let t. be the linear Bayes estimator of 0i and

8. be the linear empirical Bayes estimator of 0. as proposed in1 1

Robbins (1983), when Ex and Var x are unknown to the statisti-

cian. The regret of using ei instead of t. because of ignor-
ance of the mean and the variance is ri 

= E(2 -
vaineisrnc(0-.eE~.-.

Under appropriate conditions cumulative regret R = r +...+ r isn 1 n

shown to have a finite limit even when n tends to infinity. The

limit can be explicitly computed in terms of a,b,c and the first

four moments of x.
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1. INTRODUCTION AND SUMARY

In the first Jerzy Neyman Memorial Lecture, Robbins (1983)

has outlined a wide class of problems concerning the general empi-

rical Bayes approach and the linear empirical Bayes approach to

estimation. In this paper we shall study a special case which in-

cludes several important standard distributions. Specifically let

(e,x) be a random vector such that 6 has a distribution function

G, and the conditional expectation of x given 6 satisfies

E(x JO) e. (1.1)

Suppose it is desired to use a linear function A+Bx of the ob-

served x to estimate the unknown parameter 0. If the loss

function is squared error, the best linear estimate is

t(x) = EO + Cov(e,x) (x-Ex) . (1.2)
Var x

and the mean squared error is

E(t-e) 2 = Var Cv 2 (x) (1.3)Var x "

Assume, in addition to (1.1), that

2
Var(xIO) = a + b8 + cO . (1.4)

for some known constants a,b, and c. Then (1.2) can be written as
2

t(x)c Va x+a+b Ex+cE x) (x-Ex) (1.5)
(c+l) Var x

which is computable if Ex and Var x are known.

We shall be dealing with the case when Ex and Var x are un-

known. However we are faced with a large number n of independent

versions of the component problem: (81 ,X), ... ( ,x) are

independent random vectors having the same distributions as (8,x).

Robbins (1983) has proposed to estimate Ex and Var x respectively

by
- 1 an nd 2 1 n 2(

x - x s - (x-x) (1.6)

2 2
and use the following statistic (with h = cs + a + bX + cx),
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6. = x + (1 (x - x) (1.7)
(c+l) s.'

to estimate e., for each i=l,...,n . He has also hoped that

under some mild restrictions on the nature of G, with some reason-

able rapidity as n tends to infinity

2 2E(O i - e) E(t- . (1.8)

We shall assume that the best linear estimate (1.2) is also

the best general estimate E(ejx). This assumption will reduce

the class of possible distributions for 0. For instance, if x

has a distribution from an exponential family with parameter 0,

then the above assumption will limit the class of the prior dis-

tributions to the conjugate family. See Diaconis and Ylvisaker

(1979). However, even this special case will be wide enough to

include many standard distributions used in practice. In this

case we shall verify (1.8). Indeed we shall consider the

cumulative regret

nRn  (E( i -i  E(t(x.) - i2 )  (1.9)

of using 0.i instead of t(x.) because of the statistician's ignor-

ance of Ex and Var x. It can be shown that even as n goes to

infinity R remains bounded so that (1.8) will hold. We summar-
n

ize the main results in the following theorem and leave the proof

to the next section.

Theorem 1. Let (6,x), (e,Xl), ... be independent and identically

distributed nondegenerate random vectors such that

2
(i) E(xlO) - e, Var(xj6) = a+b&+c 2

(ii) E(OJx) = E8 + (x-Ex) Cov(e,x)/Var x.

(iii) Ex < C.
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For each n=2,..., and for each i=l,2,...,n, define

= Xn x. an d s2 = s~n = n (xi- X) 2 ' 
i".

11
2

t. = Ex + (i c Var x+a+b Ex+cE x) (x -Ex), (1.10)
I (c+l) Var x i

2 - -2
ei = + (1 - Cs+a+b+cx) -x), and2 i

(c+l)s 1

n22
R (E(S.i- ) 2 E(t.i- i 2 )

Then

2 2
lim R H 2 + 2 6
n- (c+l)2 y (c+l)2 6

2 3 4
where Ex, y =Var x, 113= E (x-) 114 = E(x-p)

2 2
H = cy + a + bp + cp , and (1.12)

a= (P 4 -y 4 )(a+bj+c1
2)2 + y

6 (b+2cp)
2

- 2y2p3(a+bp+cp2 )(b+2cp)

For the special case when b =c =0, a slightly more general

result can be established under weaker conditions. The result is

in Theorem 2.

Theorem 2. Let (61 ,Xl), (82 ,x2) ... be independent random vec-

tors satisfying the following conditions:

(A) For all i,

(i) Exi  1 and Var x. = 2 > 0.

(ii) E(xilei) = 8, and Var(xilei) = a < Y2

(iii) E(eilx i) = ES. + (xi-) Cov(i,9xi)/Y
2

(B) (iv) {(xi- )2 , i 1) satisfies the Lindeberg

condition.

-1

.. '

4. .



1n (i ) 2  2
(v) I (x -P) converges in probability to y

n1 2

and lrm Var(xi-Pj)2 is finite.
n 1

For each n - 2,..., and each i=l,2,...,n, put

2 2 1 22
x xn = ni xi, s = s n = n-1 (xi-x) 2 ' (1.13)

t. = Ex. +(l-- -a )( Ex)
1 1 Var x. i i

1

ei = x + (l- 2) (xi-x), and
s

n (E(e i - ei
)2  E(t i - ei)2)

1

Theta

2 2
lim R = a K, -).t-)

n 6 + K i 4

nf-  1 1

n

where K = lim -1 V , and V n Var(xi-1 )
nn 1

n-* 1

2. PROOF OF THE MAiN RESULTS

We need some preliminary results for Theorem 1.

Lemma 1. Let x,x1 ,x2,..., be independent and identically distri-
4buted random variables with Ex < -. Let the following notation

2 3 4be used: p = Ex, y = Var x, p3 = E(x-P) and 114 E(x-p)

For each n 1, put
n

Wn = ( I (xi-)2 -y (2.1)

W - .(xil-)2 - y x.), and2n 1 1

3n

. Then as n tends to infinity, (Wln,W1 n,W n) converges in distri- .3nn

bution to a multivariate normal distribution with mean 0 and

- .. , .*



covariance matrix =(a..), where

42 4 6 2
a1 1  44 - y ' a2 2  (v 4 -y

4 ) + - 2 Y V 3 ' (2.2) 

a3 = 4' 2y2, a1 = 1414 4 _y2N
C33 4py a12 ii(i 4 -Y) 2 3

2 4
G li and a0 1 I
13 2l.i 3, 23 = 21a213 - 21'y

The proof of the Lemma is straightforward and is omitted.

Corollary 1. Under the same conditions as Lemma 1, as n -o,

2 2
(a+c )Wln + bW2n - cy W 3n has an asymptotic normal distribution

with mean 0 and variance
2 ( 44 22 6 26

a 2 (I 4 )(a+b'+c1 ) + y (b+2c ) 2  (2.3)

2 2
- 2y 1 3 (a+bW+c 

2 )(b+2cw).

Lemma 2. Let x,xl,..., be independent and identically distri-

buted random variables with mean P and variance

2 2
y =a + bEx + cE x + d, (2.4)

4
where a,b,c and d are constants and d > 0. Assume Ex < OD.

For each n > 2, put

n 2 1 2
x = and s = -) . (2.5)

n 1 1

Then as n tends to infinity

nP [s2 < a+bx+cx2] - 0. (2.6)

Proof: Choose 6 > 0, such that E d- c+l 6- b+2cicJ'6 > 0.

Then

2 -+-2
P[s 5 a+bx+cx (2.7)

2 2 nb -2 2 -)2
< P[ ((xi-) 2

- y na +ncx -ny +n(x-p)

< P[E((xi-p)2 - < - (x-i) 2 < 6]

+ P[(x-) 2 > 6]

:: .. .
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Let B {2(xi-P) 2  2_ -En}. Then the first term in (2.7) is

less than or equal to

e[IXxi-) - y > En] (2.8)

< 212 1B (()2 -
2 ) ? dP

C n

which is o(l/n) as n tends to infinity by the uniform integra-

bility of {I(E((xi-P) - Y )2/n, n > i} implied by Ex4 < -'. For
1

the second term in (2.7)

-2

P[(x-P) > ] (2.9)

1 (n(E(x-P) 4y ) + (3n 2 2n)y 4 )

which is o(l/n) as n tends to infinity. This concludes the

proof of Lemma 2.

Lemma 3. Let x,xl,... be independent and identically distributed
2

random variables with mean p and variance y , Assume that
x6

Ex < o. For each n >- 2, put

n 2 (x i - )2  
(2.10)

-- x, and s x (210

Then the following families of random variables are uniformly

integrable:

2 2 2 2
(i) {ns (s -Y ), n> 2,

2- 2
(ii) {ns (x-P)2 , n -> 2}, (2.11)

2 -2 -P2 2, 1(iii) {ns2(x2-p2) 2  n > 2}

Proof. We shall verify (i) and (iii). The verification for (ii)

is entirely analogous and hence omitted. For (i),

2 2_ 22 (.2
ns (s2y (2.12)

2_y23 2 2_ 2 2
-n(s-2) + ny(s-y)iK 2 3 + JIy 2 2 3

< -P)n(x-p)
< 2 [(x.-p) 2 ¥ + 2 - 2

2 2
Ky 2 _ 2 + Ky 2 - 22

j ix-P) -)I+- 
n(x-p)n 1n

P-ii, i. ,-,:__. ", ,. . .. .. .. . . . . .. . ..... . .. . . . . . . . , . . , . .. .. . -
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for some constant K.

6
Since Ex < -, it is clear the four terms on the bottom line of

(2.12) are uniformly integrable. For (iii), for any event D with

P[D] small,

2 -2_2 2
Ens (x2-2 )2 ID  (2.13)

D

Z(x'-_)2 3 1/3 2 2 2 3/2 2/3<K(E( n )ID ) /  (E(n(x2- )23/ ID

which can be made small uniformly in n.

Now we are ready to give the proofs. That the convergence

in distribution of random variables together with uniform inte-

grability implies moment convergence is used. For a reference,

see (Chow and Teicher (1978), Section 8.1).

Proof of Theorem 1. Let

2 2
h = cs + a+bx+cx 2

. (2.14)

From the identity

(e 2 2 (ti ) (2.15)

= t + 2(6i-ti)(ti-ei )

taking expectation and summation and by assumptions (i) and (ii)

we have the cumulative regret
H2

H 2 H h 2 -2
R= + E( H h 2 -(xi-x) (2.16)
n (c+l) 2y (c+l)y 2  max i,(c+l) s 2

2 2

As n tends to infinity s and h will go to y and H respec-

tively with probability one. Since, (see Robbins (1983)),

2 = H + Var 0, (2.17)
c+

and e is nondegenerate, asymptotically the term inside the expec-

tation sign in (2.16) is equivalent to

.-. '- --.> -i --: "-:. • . - ... . - .. . : .. . . - " - - . ." - -



n (s2H-yIh)2

( 2 4 s2 
(2.18)

(c+) y s2

1 2 22 2_ 2- 2 2 2
2 2 2 ((a+cij )v'(s -y) + b in(ps Y X) -cy An(x )

(c+l) Y s
2_2 2_2

1_____ 2 _______ (x.1)-Y ) P~ ~i~-) -Y x .
((a+c - + +b

2- 6 x~)

(c+l) ( ) ( 9

2 -22 + 1)2
cy mah, -p ) s2 o( )

2
By Corollary 1 and (2.18), (X 1  denoting chi-squared with 1 d.f.),

H h 2 -2
T2 2 E (x .- x) (2.29)

(c+1)y max(h,(c+l)s)

a 2 2
converges in distribution to 2 6 XI, where a is defined

(c+l) y

in (2.3) Next we shall show that {T,n > 2} is uniformly inte-

grable so that as n tends to infinity

2a
ET* 26 (2.20)

(c+l) y

-2

Let A be the event {(c+l)s 2 < h}, then for some positive K -

ETIA < K fA (na+nbx+ncx ) dP (2.21)

-< K(a+bp+cp )nP[A] + Kbn fA-X-1.dP+KCn fAdX2-P2d

-< K(a+bp+cp2 )nP(AI + Kbvn ((En(x-2) 2pA])

-2 2 2
+ Kc n(En(x -p ) P[A]) 2 ,

which is o(i) by Lemma 2. On the complement of A,

2 4
(c+l) ' T (2.22)

2

- 2 (. H h + h h 2 -2
222 2 ,)2) Z(x--x)(c+1)y (c+l)y (c+l)y (c+1)s i



22 2 nh 2 2
< (H-h)2 (x.-x)2 +-- (s2-Y 2 ) _

1s[- S"

2 2 2 2 -2 2- 2 -2
5 4c (s -y ) E(x.-x) + 4b (x-11) E(xi-x)

i

+ 4c 2(x 2_P2) 2(xi-x)
2 + (c+l) 2ns 2(s2 -Y 2)

2

1j

By Lemma 3, the four terms on the bottom line of (2.22) are uni-

formly integrable. Therefore we have the regret

lim R n2 2 2 6 (2.23)
n n (c+l) 2y (c+l) y

2
Remark. The expression for a contains terms up to the fourth

2 4
moment. Although it has terms of the eighth order (e.g. c pI4 ) ,

the sixth moment assumption is to ensure the uniform integrability
1 22 3

of {( ((xiP)2_y2)) n -> 1} in Lemma 3. Nevertheless it is

reasonable to conjecture that condition (iii) in Theorem 1 can be

replaced by Ex4 < 00.

Proof of Theorem 2. From the identity

( .)-Oi - 1t 12 = t2 (2.24)

+ 2(e-t) (t-e i) ;

taking summation and expectation and by assumptions (i), (ii),

and (iii), and definition (1.13) we have the regret equal to

2
+2 1 1 )2 -2

R 2 + a E(2, 2 (xi-x) . (2.25)
n 2i 2 V+ 2n yy max(s , a) 3

2
Let v= Var(x=-p) and V v +v +...+ v . Consider the event

A = {s2 - a}, then

1 1 2 -2
y (xE ()

! E2 2 )2~x-x IA(.6max(x ,a) A (2.26)

2 i 2

5 cn P[s 2 5 a)

for some positive constant c. And



P[s2 5 a] 5 P[(xi-i) _2)n+n(x (2.27)

2 2 2 2 2
< P[E(x.-p) -y 5 (a-y )n + n(x-P) , (x-p) < 6]

- 2
+ P[(x-) - 61.

2 -
Choose 6 > 0 such that a-y2+6 = - c < 0. Let B be

:! {Z((x _ )2 _y,
2 )< _- n ,"

19S2 2

then
nP[2(xip) - Y ) -n] (2.28)

2 2 2
V (M((x.-) 2y2))

n I dP
2< fB V d
E n n|

which goes to zero as n tends to infinity by conditions (iv) and

(v), and Brown's Theorem (see Chow and Teicher (1978), p. 398).

Next, consider

- 2
nP[(x-p) > 6] (2.29)

n 1 2 2 4
< E E(x-P) - (EVar(x -P) + (3n -2n)y 4 )
6 1

which goes to zero as n tends to infinity by condition (v). On

the complement of A, and for any event D

1 1 2 (2.30)
S2 cD

m max(s ,a) A

- (n-i)y \2 2
--= -2 / (xi-j)2 I I-. y(. -x) 1 AcI

2 22c

V (E(xi-x) - (n-1)y )2

E
(n-1)ay n A

which may be made very small uniformly in n if P[D] is small

for the same reason as in (2.28). Therefore the family

•*

I.,.
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W(W 1 )2 -3x 2

Z(x , n _ 4 (2.31)Sy max(s 2 ,a )
(_2.

is uniformly integrable. And by condition (v), as n tends to
2 2

infinity s tends to y and x tends to i in probability.

By condition (iv), as n tends to infinity

-2 2
z(xi-x) - (n-1)y

- N(0,1) in distribution. (2.32)

n

Hence V
11 2 -2 1 n

E(22 - - ) (xi-x) - 1 im n (2.33)

Y max(s ,a) y{n- n 2

that is 2 2 V

limR +- im--i n . (2.34)
n- c  -Y n-

Corollary: Let (81,x9), (02,x2), ... be independent and identi-

cally distributed random vectors satisfying condition (A) in the
4

Theorem. If Ex < C, R and e. are defined in the same way as
nl 1

in (1.13) and (1.14), then

2

lim R = a E(-). (2.35)
n 2

Example 1. Suppose 6 has a common normal distribution with mean
2

and variance T and given 0, x has a normal distribution

with mean 6 and variance a. Then x has a normal distribution
2 2

with mean = and variance y a+T . Obviously the conditions

2 2
of the corollary hold; hence the regret R is 3a /(a+T ) +o(1),

n
as n tends to infinity.

O in this normal case is a variant of the James-Stein estimator,

which has been studied extensively in the literature. See Efron

and Morris (1973).

'P Example 2. Suppose 0 has an inverted gamma distribution with

density function



!.".

{ e 1>0
g(0) --

0 if 0 0,

where 3 > 0 and a > 6, and given 0, x has an exponential

distribution with mean 8 and variance 2 . The conditions (i),

(ii) and (iii) in Theorem 1 hold with a=b=O and c=l. It can be

computed that, for any 0 !5 p - 6;

Ex p  
- PF(P+I)F( -P)

r(a)
If the linear empirical Bayes estimators are used, then the cumu-

lative regret R will satisfyn

2 (a-1) ((%2- 4ct+6) 
2

lira R =n 2

n -* °  2 (a-2)(a-3)(-4)

Example 3. Suppose 0 has a gamma distribution with the density

function
S0 if e <- o .

g (e) =

a0La-l -0( a)e if 0 > 0,

where a and 0 are positive constants, and given 0, x has a

Poisson distribution with mean 0. In this case, the conditions

(i), (ii) and (iii) in Theorem 1 hold with a=c=0 and b=l. If

the linear empirical Bayes estimators are used, then the regret Rn

will satisfy

3a(0+l) + 2a+3lim R =
n 2
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